Building the UA/Eller/MIS AZSecure Cybersecurity Analytics Program: My Journey

Hsinchun Chen, Ph. D.

Regents' Professor, Thomas R. Brown Chair

Director, AI Lab, Azsecure Cybersecurity Program

Fellow, ACM, IEEE, AAAS

University of Arizona

Funding Acknowledgements: NSF (SaTC, SFS, ACI)

Outline

- Security Informatics & Analytics: COPLINK, BorderSafe, Dark Web
- Azsecure Cybersecurity Analytics:
- (1) Dark Web Analytics for studying international hacker community, forums, and markets;
- (2) Privacy and PII (Personally Identifiable Information) Analytics for identifying and alleviating privacy risks for vulnerable populations;
- (3) Adversarial Malware Generation and Evasion for adversarial AI in cybersecurity; and
- (4) Smart Vulnerability Assessment for scientific workflows and OSS (Open Source Software) vulnerability analytics and mitigation.

Computational Design Science Research at UA/Eller/MIS AI Lab

- Applications/problems: digital libraries, search engines, biomedical informatics, healthcare data mining, security informatics, business intelligence, cybersecurity analytics
- Approaches: web collection/spidering, databases, data warehousing, data mining, text mining, web mining, statistical NLP, machine learning, deep learning, ontologies, social media analytics, interface design, information visualization, economic modeling, assessment
- Structure: federal funding (NSF/DOD/NIH), director, affiliated faculty, post-docs, Ph.D./MS/BS students → tech transfer, commercialization
- Major phases: DLI → COPLINK → Dark Web → AZSecure

Security Informatics & Analytics: COPLINK & Dark Web

D-Lib Magazine July/August 1998

ISSN 1082-9873

NSF/DARPA/NASA Digital Libraries Initiative

A Program Manager's Perspective

Stephen M. Griffin Division of Information and Intelligent Systems (IIS) Program Director: Special Projects Digital Libraries Initiative National Science Foundation Arlington, Virginia USA sgriffin@usf.gov

National Institute of Justice

STRENGTHEN SCIENCE. ADVANCE JUSTICE.

Digital Government (DigitalGov)

Program Solicitation NSF 04-521 Replaces Document 02-156

National Science Foundation
 Directorate for Computer and Information Science and Engineering
 Division of Information and Intelligent Systems

Global Security Impacts

- "War on terror" (Iraq and Afghanistan) surpassed cost of Second World War, \$5 trillion...Time Magazine
- Hacker costing \$1 trillion globally...
 President Obama

From the Surface Web to the Dark Web

COPLINK: Crime Data Mining (1997-2009)

COPLINK Identity Resolution and Criminal Network Analysis

* Only the grayed datasets are available to the AI Lab

Border Security: High-risk Vehicle Identification (LPR + DM/SNA)

COPLINK: Crime Data Mining

ABC News April 15, 2003

Google for Cops: Coplink software helps police search for cyber clues to bust criminals

IBM i2 COPLINK

Accelerating law enforcement investigations

Q Palantir (\$54B, IPO 2020)

COPLINBK Commercialization Timeline

- 1994-1997, NSF DLI projects, DL, SE
- 1997, NIJ \$1.2M project, UA/TPD
- 2000, NSF DG \$1.6M, UA/TPD/PPD
- 2000, KCC founding, UA tech transfer; \$2.6M VC funding
- 2001, Tucson, Phoenix, San Diego
- 2002, bubble burst, \$2M additional funding (anti-dilution clause)
- 2003, DC snipper investigation use, NYT cover article; AZ, CA, NJ, IL
- 2009, SilverLake PE fund; COPLINK + i2
- 2011, sold to IBM (\$500M); Chen exit
- 2017, IBM sold COPLINK to Forensic Logic

→ COPLINK is in use in 5,000+ law enforcement jurisdictions and intelligence agencies in the U.S. and Europe, making significant contribution to public safety worldwide.

Dark Web: Countering Terrorism (2003-2014)

- Dark Web: Terrorists' and cyber criminals' use of the Internet
- Collection: Web sites, forums, blogs, YouTube, etc.
- 20 TBs in size, with close to 10B pages/files/messages (the entire LOC collection: 15 <u>TBs</u>)

Dourous

Arabic Writeprint Feature for Authorship Analysis

CyberGate (Abbasi, et al., MISQ, 2008)

14

The Dark Web project in the Press

Project Seeks to Track Terror WebS Posts, 11/11/2007

Researchers say tool could trace online posts to terrorists, 11/11/2007

Mathematicians Work to Help Track Terrorist Activity, 9/14/2007

ISI, Springer, 2006

• Intelligence and Security Informatics (ISI) (Chen, 2006)

Data, text, and web miningFrom COPLINK to Dark Web

• IEEE ISI, EISIC, PAISI → 4000+ scholars, since 2003

Dark Web, Springer, 2012

Integrated Series in Information Systems 30 Series Editors: Ramesh Sharda - Stefan Voß Hsinchun Chen Dark Web **Exploring and Data Mining** the Dark Side of the Web D Springer

22 chapters, 451 pages, 150 illustrations (81 in color); Springer Integrated Series in Information Systems, 2012.

Selected TOC:

- Forum Spidering
- Link and Content Analysis
- Dark Network Analysis
- Interactional Coherence Analysis
- Dark Web Attribution System
- Authorship Analysis
- Sentiment Analysis
- Affect Analysis
- CyberGate Visualization
- Dark Web Forum Portal
- Case Studies: Jihadi Video Analysis, Extremist YouTube Videos, IEDs, WMDs, Women's Forums

Pivoting to Cyber Security

AZProtector (Abbasi, Chen, et al., 2010; MISQ best paper)

SPECIAL ISSUE

Fraud Cues

DETECTING FAKE WEBSITES: THE CONTRIBUTION OF STATISTICAL LEARNING THEORY¹

Table 2. Examples of Fraud Cues Incorporated in AZProtect Attribute Fake Site Category Group Fraud Cues Description Туре Web page Word "member FDIC Concocted References to Federal Deposit Insurance Corporation rarely "about FDIC" text phrases appear in concocted bank websites. "© 2000-2006" Concocted Outdated copyrights often appear in concocted websites. "fee calculator' Concocted cargo delivery websites provide competitive phony Concocted estimates to lure customers. Legitimate sites typically offer estimates in-person through sales representatives. "pay by phone" Concocted Fraudsters prefer to engage in online transactions. They rarely "call toll free" offer phone-based payment options. Concocted websites do not provide considerable support for "payment history" Concocted "password management" returning customers since they generally do not have any. "enter your account" Lexical Average sentence length Concocted Sentences in concocted websites tend to be two to three times measure longer than ones in legitimate sites. Average word length, Concocted websites often contain concatenated words (e.g., frequency of long words "groundtransport" and "safebankingcenter"), resulting in unusually lengthy words. Average number of words Concocted website pages are more verbose than legitimate sites-containing twice as many words per page, on average. per page "Adobe Acrobar" Concocted Spelling Concocted web pages contain many misspellings and grammatical mistakes and "frauduluent" gramma "recieve the "think forwarder" URLS URL text "HTTPS Concocted, Fake websites rarely use the secure sockets layer protocol. Spoof Random characters in Concocted, Since fake websites are mass produced, they use random URLs (e.g., "agkd-Spoof characters in URLs. It also allows new fake websites to easily escrow," "523193pay" circumvent lookup systems that rely on blacklists of exact URLs. Number of slashes "/" in Spoof Spoof sites often piggy back off of legitimate websites or third URL party hosts. The spoofs are buried deep on these websites servers Errors in the URL Anchor Concocted Anchor text is used to describe links in web pages. Concocted Text descriptions (e.g websites occasionally contain misspelled or inaccurate anchor "contactus") text descriptions. Source HTML and "METHOD POST" Concocted, This HTML command is used to transmit data. It often appears in fake pages that are unsecured (i.e., "HTTP" instead of "HTTPS"). Code Javascript Spoof commands Image Preloading Concocted, This Javascript code, which is used to preload images to Spoof decrease page loading times, rarely appears in fake websites. Coding "//*" "<!" " =" "//..//" Concocted, Stylistic and syntactic elements in the source code can help Spoof identify automatically generated fake websites. style Fake websites often reuse images from prior fake websites. The Images Image File name, file Concocted meta data extension/format, file size file names, extensions, and file sizes can be used to identify Spoof duplicate images. If the image file name and format have been altered, image pixel Image Pixel colors Concocted. pixels Spoof colors can be used to identify duplicates. Linkage Site level Number of in/out links Concocted, Legitimate websites can contain links to and from many websites, Spoof unlike concocted and spoof sites. Number of links, number Concocted, Fake websites tend to have fewer pages, and consequently, less Page level of relative/absolute links Spoof linkage between pages. They also often use relative link addresses.

Escrow Kernnel for Detecting Fake Web Sites

Represent each page *a* with the vectors: $x_{a} = \{ Sim_{ave}(a, b_{1}), ..., Sim_{ave}(a, b_{p}) \}; y_{a} = \{ Sim_{max}(a, b_{1}), ..., Sim_{max}(a, b_{p}) \}$ Where: $Sim(a, k) = \lambda \left(\left(1 - \frac{||v_{a} - |v_{k}||}{|v_{a} + |v_{k}|} \right) + \left(1 - \frac{|in_{a} - in_{k}|}{in_{a} + in_{k}} \right) + \left(1 - \frac{|out_{a} - out_{k}|}{out_{a} + out_{k}} \right) \right) + (1 - \lambda) \left(1 - \frac{1}{n} \sum_{i=1}^{n} \frac{|a_{i} - k_{i}|}{a_{i} + k_{i}} \right)$ $Sim_{ave}(a, b) = \frac{1}{m} \sum_{k=1}^{m} Sim(a, k)$ $Sim_{max}(a, b) = amax_{kepages in site b}$ For: $b \in p$ web sites in the training set; $k \in m$ pages in site b; $a_{i_{1}}...a_{n}$ and $k_{1}...k_{n}$ are page a and k's feature vectors; $|v_{a}, in_{a}, and out_{a}$ are the page level and number of in/out links for page a; The similarity between two pages is defined as the inner product between their two vectors x_{1}, x_{2} and y_{1}, y_{2} : Linear Composite Kernel: $K(x_{1} + y_{1}, x_{2} + y_{2}) = \frac{\langle x_{1}, x_{2} \rangle}{\sqrt{\langle x_{1}, x_{1} \rangle \langle x_{2}, x_{2} \rangle}} + \frac{\langle y_{1}, y_{2} \rangle}{\sqrt{\langle y_{1}, y_{1} \rangle \langle y_{2}, y_{2} \rangle}}$

Performance vs. Classifier and Lookup Systems

Table 3. Performance Results (%) for Classifier and Lookup Systems											
System		Overall	Real Websites (n = 200)		Concocted Detection (n = 350)			Spoof Detection (n = 350)			
		(n = 900)	F1	Prec.	Rec.	F1	Prec.	Rec.	F1	Prec.	Rec.
Classifier	AZProtect	92.56	85.21	76.29	96.50	91.82	97.74	86.57	97.12	97.97	96.29
	eBay AG	44.89	44.64	28.73	100.00	6.09	100.00	3.14	71.08	100.00	55.14
	Netcraft	83.00	72.13	56.74	99.00	82.28	99.19	70.29	92.52	99.34	86.57
	SpoofGuard	70.00	57.28	41.90	90.50	65.81	90.50	51.71	84.14	93.38	76.57
Lookup	EarthLink	42.67	43.55	27.87	99.50	15.75	96.77	8.57	61.27	99.36	44.29
	IE Filter	55.33	49.87	33.22	100.00	17.70	100.00	9.71	85.99	100.00	75.43
	FirePhish	54.89	49.63	33.00	100.00	12.84	100.00	6.86	87.09	100.00	77.14
	Sitehound	47.33	45.77	29.67	100.00	58.59	100.00	41.43	37.58	100.00	23.14

Figure 8. ROC Curves for Classifier and Lookup Systems

Performance vs. Other ML Techniques

Table 6. Performance Results (%) for Various Learning-Based Classification Techniques										
	Overall Accuracy (n = 900)	Real Websites (n = 200)			Concocted Detection (n = 350)			Spoof Detection (n = 350)		
Learning Technique		F1	Prec.	Rec.	F1	Prec.	Rec.	F1	Prec.	Rec.
SVM	92.56	85.21	76.29	96.50	91.82	97.74	86.57	97.12	97.97	96.29
Logistic regression	89.00	78.53	69.36	90.50	90.02	94.08	86.29	92.58	94.36	90.86
J48 Decision Tree	88.77	75.66	73.01	78.50	88.82	87.95	89.71	90.98	88.41	93.71
Bayesian Network	88.56	77.27	69.18	87.50	88.72	92.28	85.43	92.55	92.82	92.29
Naïve Bayes	77.67	63.12	49.86	86.00	86.49	91.14	82.29	77.47	89.51	68.29
Winnow	76.11	58.73	47.66	76.50	80.96	85.17	77.14	79.52	84.79	74.86
Neural Network	66.22	54.21	38.79	90.00	70.63	90.99	57.71	73.28	91.45	61.13

Figure 9. ROC Curves for Various Learning Classifiers

Azsecure Cybersecurity Analytics Program:

- (1) Dark Web Analytics for studying international hacker community, forums, and markets;
- (2) Privacy and PII (Personally Identifiable Information) Analytics for identifying and alleviating privacy risks for vulnerable populations;
- (3) Adversarial Malware Generation and Evasion for adversarial AI in cybersecurity; and
- (4) Smart Vulnerability Assessment for scientific workflows and OSS (Open Source Software) vulnerability analytics and mitigation.

AZSecure Cybersecurity Analytics Program (2010-present): SaTC, SFS, ACI

Secure and Trustworthy Cyberspace (SaTC)

PROGRAM SOLICITATION

NSF 21-500

REPLACES DOCUMENT(S): NSF 19-603

National Science Foundation

Directorate for Computer and Information Science and Engineering Division of Computer and Network Systems Division of Computing and Communication Foundations Division of Information and Intelligent Systems Office of Advanced Cyberinfrastructure CyberCorps(R) Scholarship for Service (SFS) Defending America's Cyberspace

PROGRAM SOLICITATION NSF 21-580

REPLACES DOCUMENT(S): NSF 19-521

National Science Foundation Directorate for Education and Human Resources Division of Graduate Education Cybersecurity Innovation for Cyberinfrastructure (CICI)

PROGRAM SOLICITATION NSF 21-512

REPLACES DOCUMENT(S): NSF 19-514

Directorate for Computer and Information Science and Engineering Office of Advanced Cyberinfrastructure

nature

doi:10.1038/nature16961

Mastering the game of Go with deep neural networks and tree search

David Silver¹*, Aja Huang¹*, Chris J. Maddison¹, Arthur Guez¹, Laurent Sifre¹, George van den Driessche¹, Julian Schrittwieser¹, Ioannis Antonoglou¹, Veda Panneershelvam¹, Marc Lanctot¹, Sander Dieleman¹, Dominik Grewe¹, John Nham², Nal Kalchbrenner¹, Ilya Sutskever², Timothy Lillicrap¹, Madeleine Leach¹, Koray Kavukcuoglu¹, Thore Graepel¹ & Demis Hassabis¹

nature

doi:10.1038/nature24270

Mastering the game of Go without human knowledge

David Silver¹*, Julian Schrittwieser¹*, Karen Simonyan¹*, Ioannis Antonoglou¹, Aja Huang¹, Arthur Guez¹, Thomas Hubert¹, Lucas Baker¹, Matthew Lai¹, Adrian Bolton¹, Yutian Chen¹, Timothy Lillicrap¹, Fan Hui¹, Laurent Sifre¹, George van den Driessche¹, Thore Graepel¹ & Demis Hassabis¹

Al & Deep Learning: From AlphaGo to Autonomous Vehicles (2012-)

Hacker Web, AZSecure projects at UA/MIS AI Lab (2010-present)

Al and Cybersecurity

- Al and Cybersecurity \rightarrow not just buzzwords!
 - Noted as a national security priority by NSF, NSTC, and NAS.
- Role of AI for Cybersecurity :
 - 1. Automate common cybersecurity tasks
 - 2. Identify patterns in large datasets

ARTIFICIAL INTELLIGENCE AND **CYBERSECURITY: OPPORTUNITIES** AND CHALLENGES

TECHNICAL WORKSHOP SUMMARY REPORT

A report by the **NETWORKING & INFORMATION TECHNOLOGY** RESEARCH AND DEVELOPMENT SUBCOMMITTEE

and the MACHINE LEARNING & ARTIFICIAL INTELLIGENCE SUBCOMMITTEE of the NATIONAL SCIENCE & TECHNOLOGY COUNCIL

MARCH 2020

AI for Cybersecurity – An Analytics Approach

SPECIAL ISSUE

MOVING TOWARD BLACK HAT RESEARCH IN INFORMATION SYSTEMS SECURITY: AN EDITORIAL INTRODUCTION TO THE SPECIAL ISSUE

By: M. Adam Mahmood University of Texas at El Paso mmahmood@utep.edu

> Mikko Siponen University of Oulu, Finland mikko.siponen@oulu.fi

Detmar Straub Georgia State University dstraub@gsu.edu

H. Raghav Rao State University of New York at Buffalo mgmtrao@buffalo.edu

T. S. Raghu Arizona State University raghu.santanam@asu.edu

Introduction I

The *MIS Quarterly* Special Issue on Information Systems Security in the Digital Economy received a total of 80 manuscripts from which we accepted nine for publication in the Special Issue. To introduce the readers to the special issue papers, we have chosen to digress from the tradition of summarizing the papers in-depth and, instead, would like to take this opportunity to encourage researchers to conduct

Black Hats Versus White Hats Versus Grey Hats

What exactly is this white hat versus the black hat dichotomy? When making movies about the Old American West, filmmakers made a symbolic distinction at times between the good guys, wearing white hats, and the bad guys, wearing black hats. If, for the sake of our basic theme, we can adopt this distinction momentarily, we would like to go on to asseverate that the information systems field is heavily overemphasizing research on white hats to the detriment of studies on black hats. It is easy to see how this would, quite naturally, occur. Scholars have better access to white hats, although even here, white hat managers do not typically want to share detailed information about their losses and have responded in this manner for some time (Hoffer and Straub 1989). Thus it is a readier access to data that has led information security researchers to gravitate toward white hat issues.

Whereas we could offer more extensive evidence of the prevalence of white hat IS research studies, a quick review of the papers in this special issue indicates that only the paper by Abbasi, Zhang, Zimbra, Chen, and Nunamaker attempts to empirically represent the activities of black hats, but even with this representation, we are at arm's length from black hat motivations and future dark plans.

We need to state unequivocally that our argument for more emphasis on the black hat type of research in no way diminishes the contributions of the white hat papers in this special

Dark Web Analytics:

studying international hacker community, forums, and markets

(ACI, 2012-2017; SaTC 2013-2018; SFS-1, 2012-2018; SaTC 2019-; SFS-2, 2019-)

Secure and Trustworthy Cyberspace (SaTC)

PROGRAM SOLICITATION NSF 21-500

REPLACES DOCUMENT(S): NSF 19-603

National Science Foundation

Directorate for Computer and Information Science and Engineering Division of Computer and Network Systems Division of Computing and Communication Foundations Division of Information and Intelligent Systems Office of Advanced Cyberinfrastructure CyberCorps(R) Scholarship for Service (SFS) Defending America's Cyberspace

PROGRAM SOLICITATION NSF 21-580

REPLACES DOCUMENT(S): NSF 19-521

National Science Foundation

Directorate for Education and Human Resource Division of Graduate Education Cybersecurity Innovation for Cyberinfrastructure (CICI)

PROGRAM SOLICITATION NSF 21-512

REPLACES DOCUMENT(S): NSF 19-514

Mational Science Foundation

Directorate for Computer and Information Science and Engineering Office of Advanced Cyberinfrastructure

Hacker Web

нинстратор	The same	
	 We can the exploit to replace openent-1.2 tas provide a modified version Administrator installs our OpenSIN 5.2 with our _modifications_ 	1.25
4. 10	The doublead history will still show the name of the site that supplied the filename even when the target user opened the our replacement file instead.	niginal file.
51 M	Conditions that have to be man for supportation to suppress	
BANHAR	 The shilty to write in the temporary file dimension, "/emp" by default at ishell, fp, with with spine permissions could be helpful for making this 2. The sampet user chooses to divided the file and chooses the "Oppen with" j 3. The target user also that to double click the file in the developed manager correctly, the file oppens automatically, as mortal behavior; but that can 	n Linux Hork yesotely) preferenze (in previous a no looger be
25ес жие форуна гистриция: 19.05.2007 общений: 1.025	Firefue on Windows has elightly different results. I found during twening the the tight file will be opened. Although unpeliable, we were able to get the annugge to show the replacement file and it will be opened if the user theose replacituding on Unions would be limited and would do it to far that and do	it often the dat Listery of the to to open it 't deally as
nyraumi 739 Qi 22222208	scoure to distail things on Annues as the Serity common on Linux On Linux replanment file to be keyn in history when using this explaint, which can be replace then you don't went the target to black explains multi set of the	it is also en useful far be redinary it
	mesilla-1.9.1/apcon/in/nelocalFileCommun.cpp -> 12002 (84-174))	1000
	ME_INTINCING nalocalitie::CreateDiague(FEDiani2_type, SEDiati2_attributes)	16 C
Code to	Desveult zvy BBBool LongHamey	- 26
execute	FLENder 707_0120 mediatuffrang partolloms, IsacTlans, supplians, supflans, ev = GerBath partolloms()	G/ 1
exploit	reConstruction pathflare, leaflane, scoulere, suffix:	100

exploit Mozilla Firefox 3.5.3

Mass mailing or targeted campaigns that use common files to host or exploit code have been and are a very popular vector of attack. In other words document received via e-mail or opened trough a browser plug-in. In regards to malicious PDF files the security industry save as significant increase o half of 2008 which might be related to Adobe Systems release of the specifications, format structure and functionality of PDF files.

Note enterprise networks perimeters are protected and contain several security filters and mechanism that block threads. However a malicious PDFvery successful passing trough Firewalls, Intrusion Prevention Systems, Anti-span, Anti-virus and other security controls. By reaching the victim mai leverage social engineering techniques to lure the user to click/open the document. Then, for example, Jf the user opens a POF malicous BIP exploses a vulnerability when Adobe Reader parses the crafted file. This might cause the application to corrupt memory on the stack or heap causing as sheltode. This sheltode normally downloads and executes a malicous BIP form the Internet. The Internet Storm Center Handler Bipan Zdring w of these sheltodes. In some circumstances the vulnerability could be exploited without opening the file and just by having a malicious BIP form

<u>Tutorial</u> on how to create malicious documents

BlackPOS malware <u>attachment</u>.

Selected data breaches in 2014

Victim Date		Ramification		
Target	2013.12	40M credit/debit cards; 70M customer records; 46% drop in annual profits (seller: Rescator)		
Neiman Marcus	2014.3	282K credit/debit cards		
Sally Beauty	2014.3	25K credit/debit cards		
P.F. Chang	2014.6	8 month of customer data from 33 stores		
J.P. Morgan Chase 2014.8 83N		83M accounts	Yahoo confirms: hackers stole 500 million	
UPS	2014.8	51 stores customers	account details in 2014 data breach Boohoo for Yahoo. State-sponsored attacker blamed for hack as users told to change passwords.	
Dairy Queen	2014.9	395 store systems	Graham Chiley [Segtember22.2018.01 cm] Filed under Data loss, Yaleou] 21 457 Share on Twitter f Share on Facebook +	
Home Depot	2014.9	56M credit/debit cards		
Jimmy Jones	2014.9	216 store systems		
Staples	2014.10	51 store systems	UUU,UUU,UUU+	

Are your data breached? Do you even know?

Hacker Community Platforms – "Know your enemy"

Discussion board allowing hackers to freely share malicious tools and knowledge

DarkNet Markets

Markets facilitating the sale of illicit goods (e.g., new exploits, drugs, weapons) Shops selling sensitive information (e.g., credit cards, SSN's)

Carding Shops

Mr. Bin

FAQ

IRC Channels

Markets Mar

Plain-text IM service commonly used by hacktivist groups (e.g., Anonymous)

US \rightarrow cybercrime and general hacking Russia \rightarrow underground economy, financial fraud China \rightarrow cyberwarfare content

MIS Quarterly Vol. 43 No. 1, pp. 1-22/March 2019

METHODS ARTICLE

DICE-E: A FRAMEWORK FOR CONDUCTING DARKNET IDENTIFICATION, COLLECTION, EVALUATION WITH ETHICS¹

Victor Benjamin

Identify Hacker Assets/Tools

Sagar Samtani (JMIS, January 2018)

Journal of Management Information Systems

ISSN: 0742-1222 (Print) 1557-928X (Online) Journal homepage: http://www.tandfonline.com/loi/mmis20

Exploring Emerging Hacker Assets and Key Hackers for Proactive Cyber Threat Intelligence

Sagar Samtani, Ryan Chinn, Hsinchun Chen & Jay F. Nunamaker Jr.

Hacker Asset/Tool Examples

03-07-2014	Colphi] Noob Botnet Construct	08-08-2014 - Post Date
Ruffy • Senior Member Join Date: Apr 2010 Lostis: Germany Posts: 247 Code to Execute Exploit	<pre>just a old snippet by me which shows one of a possible construct to code a bot in delphi. enjoy it Code: program autoStart; uses Windows, Registry, SysUtils, ShellApi, TLHelp32, WinTypes, Messages, WinProcs, WinINet, URLMon; var str, OldName, NewName, NewDir, SPath, dlURL: String; Overwrite, Idle, AntiRE: Boolean; i: Integer; {Installation Konfiguration</pre>	Image: Pos Image: Pos

Figure 1. Forum post with source code to create botnets

Figure 2. Forum post with BlackPOS malware attachment

AZSecure Hacker Assets Portal System

AZSecure Hacker Assets Portal (English, Russian, Arabic)

Forum	Language	Date Range	# of Posts	# of Members	# of source code	# of attachments	# of tutorials
OpenSC	English	02/07/2005-02/21/2016	124,993	6,796	2,590	2,349	628
Xeksec	Russian	07/07/2007-9/15/2015	62,316	18,462	2,456	-	40
Ashiyane	Arabic	5/30/2003 – 9/24/2016	34,247	6,406	5,958	10,086	80
tuts4you	English	6/10/2006 - 10/31/2016	40,666	2,539	-	2,206	38
exelab	Russian	8/25/2008 - 10/27/2016	328,477	13,289	4,572	-	628
Total:	-	02/07/2005- 10/31/2016	590,699	47,492	15,576	14,851	987
Cyber Threat Intelligence (CTI) Example – Bank Exploits (e.g., BlackPOS)

Cyber Threat Intelligence (CTI) Example – Mobile Malware

Labeling Hacker Exploits for Proactive Cyber Threat Intelligence: A Deep Transfer Learning Approach

Benjamin Ampel (MISQ, 2nd Round))

Literature Review: Hacker Forum Exploit Analysis

Year	Author	1. Data Source	2. Data Type Used	Analytics	Identified Exploits	3. Purpose
2019	Schafer et al.	General purpose forums	Forum titles, users, message, topic, keywords	SNA, LDA	Leaks, botnets, DDoS	Trend identification
2019	Benjamin et al.	General purpose forums	Post content, attachments, source code, keywords, reputation	OLS Regression	Rootkit, XSS, SQLi, DDoS, shellcode, drive-by	Darknet identification, collection, evaluation
2018	Williams et al.	General purpose forums	Sub-forum name, author, post content, attachment metadata	LSTM	Crypters, keyloggers, RATs, DDoS, SQLi	Exploit categorization
2018	Goyal et al.	Forums, Twitter, Blogs	Post content, Tweet content, blog content	LSTM, RNN	Trojan, Windows, Apple OSX, phishing	Cyber attack prediction
2018	Deliu et al.	Nulled.IO leak	Post content	SVM, CNN	Botnet, crypter, keylogger, malware, rootkit	Exploit categorization
2017	Samtani et al.	General purpose forums	Post content, assets, thread, author, source code	LDA, SVM	Crypters, keyloggers, RATs, botnets	Exploit categorization
2017	Grisham et al.	General purpose forums	Post content, date, author, role, attachments	RNN	Mobile malware	Malware identification/ Proactive CTI
2017	Deliu et al.	Nulled.IO leak	Post content	SVM, LDA	Backdoor, botnet, crypter, DDoS, exploit, malware, password, rootkit	Exploit categorization

• Key Observations:

- 1. Studies focus on general forums, but not exploit DNMs or public repositories.
- 2. Although source code contains valuable information, many studies omit them from analysis.
- 3. The most common task is to categorize post content by exploit category.

Proposed Research Design

Research Design: DTL-EL

Results and Discussion: DTL-EL Model

Experiment 2: Intern transfer learnir	ernal against non- Results rning models				
Model	Layer Weights	Accuracy	Precision	Recall	F1
Naïve Bayes	Random	8.59% ***	18.09% ***	15.08% ***	16.45% ***
Logistic Regression	Random	37.16% ***	35.13% ***	38.85% ***	36.9% ***
XGBoost Decision Tree	Random	47.65% ***	48.87% ***	30.06% ***	37.22% ***
SVM	Random	48.72% ***	37.98% ***	27.38% ***	31.82% ***
RNN	Random	57.64% ***	62.89% ***	53.93% ***	57.62% ***
GRU	Random	61.34% ***	64.06% ***	59.27% ***	62.09% ***
LSTM	Random	62.39% ***	65.77% ***	60.49% ***	63.42% ***
BiLSTM	Random	63.05% ***	67.56% ***	59.71% ***	63.21% ***
BiLSTM w/ Attention	Random	63.38% ***	66.04% ***	61.88% ***	64.02% ***
DTL-EL (Our model)	Transferred	66.17%	68.25%	64.99%	66.61%

Case Study: Identifying Key Hackers - SQLi

- Since 2017, SQL injections are the most prevalent exploit in Russian forums.
- The five hackers with the most SQL injections posted on Russian forums are:
 - karkajoi (13 exploits) 1.
 - sepo (12 exploits) 2.
 - BenderMR (12 exploits) 3.
 - Zmii666 (6 exploits) 4.
 - fandor9 (6 exploits) 5.

Active Member, Male

karkajoi was last seen: Yesterday at 7:33 PM

Вопросы по SQLMap

User posts containing a SQL injection attack

Ну да, это дает больше профита чем иньекция, но верить Post by: karkalo, 23 Sep 2020 in forum: Value Mocra

Jser Avatar and Metad

Yesterday at 7:33 PM

26 Oct 2016

272

1

Last Activity:

Likes Received:

Following

Joined: Messages: Словари для брута wpa wpa2 все тут Ну, тогда инвайт, если кто то впряжотся) Post by: karkalo, 22 Sep 2020 in forum:

Словари для брута wpa wpa2 все тут Все проблемные впн решает по оплате Post by: karkatol, 22 Sep 2020 in forum: Беспроводные то

Figure 1E Hacker Drofile Dage on Antichat

Case Study: Hacker Profile - Karkajoi

- "Karkajoi" is a unique username and can be found on separate Russian hacker forums (e.g. rootme, raidforums), suggesting he is an active contributor in the larger hacker community.
- Along with SQL injections, he also cracks various hashes and posts web application exploits.

Figure 15. Hacker Profile Page on Antichat

Case Study: System Integration

- Hacker exploit source code can be input for classification with attention weights.
- The system applies a DTL-EL label upon the collection of new hacker forum text, providing real-time information to researchers.
 - APIs allow for forums to be downloaded in their entirety with related programming languages and exploit labels for source code.

Hacker Exploit Dashboard

Label Your Exploit

userid name

select I

Figure 16. Hacker Exploit Portal For Further Analysis

users

Detecting Cyber Threats with AI Agents: Multilingual, Multimedia DNM Content

Reza Ebrahimi (JMIS, MIS, IEEE PAMI)

Detecting Cyber Threats with AI Agents

- Intelligence Source: Dark web
 - A large conglomerate of platforms that facilitate illegal transactions among hackers
- DarkNet Market Places (Amazon for illegal products; hidden from search engines) → Attract cybercriminals
 - Hacker Assets: Hacking tools (Remote Access Trojan); malicious executables; hacking tutorials
 - Non-Hacker Assets: Digital goods (credit card information); copyrighted software; pirated e-books; counterfeits; drugs; forged documents

Dark Net Marketplaces (DNMs)

Essay I: Learning From Unlabeled Cybersecurity Content (JMIS, March 2020)

- Learning from examples \rightarrow supervised by human-labeled data \rightarrow Expensive!
- Unlabeled data improves cyber threat detection with transductive learning theory

50

Essay II: Learning from Heterogeneous Cybersecurity Content (MISQ, Forthcoming)

- Cyber threat detection in non-English content \rightarrow lack of non-English training data
- Transfer cyber threat knowledge from high-resource English platforms to non-English ones with **transfer learning theory**

• Significantly decreased reliance on human supervision and outperformed machine translation.

Essay III: Learning from Heterogeneous Cybersecurity Content (IEEE TPAMI, 2nd Round)

- Learning from two domains (multilingual text, source code, image representations)
- Align different data distributions & feature spaces with domain adaptation theory

• Enables heterogeneous data analytics (multilingual text, images) in any online market.

Privacy and PII (Personally Identifiable Information) Analytics:

identifying and alleviating privacy risks for vulnerable populations

(SaTC 2019-; SFS-2, 2019-)

Secure and Trustworthy Cyberspace (SaTC)

PROGRAM SOLICITATION NSF 21-500

REPLACES DOCUMENT(S): NSF 19-603

National Science Foundation

Directorate for Computer and Information Science and Engineering Division of Computer and Network Systems Division of Computing and Communication Foundations Division of Information and Intelligent Systems Office of Advanced Cyberinfrastructure CyberCorps(R) Scholarship for Service (SFS) Defending America's Cyberspace

PROGRAM SOLICITATION NSF 21-580

REPLACES DOCUMENT(S): NSF 19-521

National Science Foundation

Directorate for Education and Human Resources Division of Graduate Education Automated Analysis of Changes in Privacy Policies: A Structured Self-Attentive Sentence Embedding Approach

Fangyu Lin (MIS, 2nd Round)

Privacy Policy, Before and After GDPR:

- Privacy policies contain lengthy texts.
- Require a college reading level to decode legalistic, confusing, or jargon-laden phrases (Gluck et al. 2016; Jain et al. 2016)

Feb 25 2015		Jan 22 2019			
Accessing and updating your personal information		Exporting, remov You can export a	ving & a copy	deleting your information of content in your Google	
Whenever you use our s you with access to you that information is wr ways to undate it quic	ervices, we aim to provide or personal information. If ong, we strive to give you	Account if you w service outside You can also red specific Google	want to of Goo quest t servio	back it up or use it with a ogle. To remove content from tes based on applicable law.	
we have to keep that i business or legal purp personal information, your identity before w	have to keep that information for legitimate siness or legal purposes. When updating your ersonal information, we may ask you to verify our identity before we can act on 1. Long Texts		 To delete your Delete your services Search for a your account u 2. Legalistic, confusing, or jargon-laden phrases This segment corresponds to Art. 20 GDPR. Right to data portability: The data subject shall have the right to receive the personal data and 		
Figure 1 . A "User Access, E Google Privacy Policy Befo portability" was added to	Edit, & Deletion" Segment in ore and After GDPR: "Right to data the new version.	- Delete speci ^t information asso - Delete your en	ransmit ociated ntire G	those data to another controller. I with those products Google Account	

Research Design and Testbed

Figure 3. Research Design for the Proposed Privacy Policy Evolution Analysis Framework

Data Practice Annotation Framework – SAAAS

Figure 4. Row-Wise Self-Attentive Sentence Embedding: Key contribution is in red.

Row-Wise Self-Attentive Sentence Embedding

1. Bi-LSTM

- 2. Attention Mechanism
- 3. Matrix Sentence Embedding M
- 4. Row-Wise Attention Mechanism
 - Input: Matrix sentence embedding M
 - **Output:** Row-wise attention weight matrix A^{RW}
- 5. Vector Sentence Embedding
 - Input: Matrix sentence embedding M and A^{RW}
 - Output: Vector sentence embedding V
 - **V** is the dot product of **M** and **A**^{RW}

Results and Discussion – SAAAS vs Benchmark Deep Learning Methods

Precision F1 Recall 0.726* 0.761* **CNN** 0.801* 0.810* 0.717* 0.760* **Bi-GRU+max** 0.812* 0.738* 0.773* **Bi-GRU+mean** 0.812* 0.717* 0.761* **Bi-LSTM+max** 0.806* 0.736* 0.769* **Bi-LSTM+mean** 0.802* 0.759* 0.779* **SSASE SAAAS** 0.818 0.765 0.790

Case Study: GDPR Impact Detection (An Example)

Weight

0

59

TFIDF	SAAAS		L
Pre-GDPR P	rivacy Policy		
we collect information you provide to us when you	we collect information you provide to us when you		
request products services or information from us	request products services or information from us		
register with us participate in public forums or other	register with us participate in public forums or other		
activities on our sites and applications respond to	activities on our sites and applications respond to		
customer surveys or otherwise interact with us	customer surveys or otherwise interact with us		
Post-GDPR F	Privacy Policy	0)
we collect information you provide to us when you	we collect information you provide to us when you	1	L
request or purchase products services or information	request or purchase products services or information		
from us register with us including when you link your	from us register with us including when you link your		
profile on a third party site or platform with your	profile on a third party site or platform with your		
registration account participate in public forums or	registration account participate in public forums or		
other activities on our sites and applications respond	other activities on our sites and applications respond		
to guest surveys or otherwise interact with us using	to guest surveys or otherwise interact with us using		
one or more devices	one or more devices		

Table 9. An example of corresponding segment in pre- and post-GDPR "Disney" privacy policy. The red part is unmodified, and the blue part is new content. In the heatmap, the shade of red and blue corresponds to the weight, ranging from 0 to 1.

Case Study: GDPR Impact Detection

- The number of words increased in most of the categories. Complies with GDPR and CCPA requirements to provide comprehensive information related to data processing
- First Party Collection and Third-Party Collection categories changed the most.

Changes in Number of Words by Sector Type and Data Practice Categories

Arts Business Computer Games Health Home Kids News Recreation Reference Regional Science Shopping Society Sports

Exploring Privacy Risk of Exposed Digital Personally Identifiable Information (PII): A Neighbor Attention-Based Approach

Fangyu Lin and Hsinchun Chen

Data Breaches since 2005 (FTC, Clearinghouse, 2019)

- # of records breached: 11,582,808,013
- # of data breaches: 9,071

Revealing and Protecting PII: From Dark Web to Surface Web

IRB, HIPAA, GDPR, PII

- → Cybersecurity to Privacy
- → Michael Bazzell + From Dark Web to Surface Web

Open Source Intelligence Techniques

RESOURCES FOR SEARCHING AND ANALYZING ONLINE INFORMATION

MICHAEL BAZZELL

HIDING FROM The Internet

ELIMINATING PERSONAL ONLINE INFORMATION FOURTH EDITION MICHAEL BAZZELL

Dark Web Intelligence Sources (May, 2019)

Source	Description	Size*	Promising Attributes
Stolen Account	Stolen social media and e-	25 billions	Username
Collection	mail accounts		Password
Stolen Credit Card	Stolen credit and debit card	832	Full name
- Tormarket	owner information	thousands	Country
	* No card number		State
			City
			Zip
Stolen SSN -	Personal information of SSN	5.75	Full name
Buyssn	owners	millions	YOB
	*No SSN		City
			State
			Zip
			Country

"Passwords are like underwear... change often, don't share..."

Stolen Accounts

	E-mail		
Rank	Domains	Numbers	Percentage
1	yahoo.com	244,769,117	20.41%
2	hotmail.com	182,564,724	15.22%
3	gmail.com	103,435,791	8.62%
4	mail.ru	90,371,699	7.53%
5	aol.com	44,830,568	3.74%
6	yandex.ru	36,336,003	3.03%
7	rambler.ru	23,521,080	1.96%
8	hotmail.fr	16,571,495	1.38%
9	web.de	12,918,595	1.08%
10	live.com	11,661,375	0.97%
11	msn.com	11,248,354	0.94%
12	gmx.de	10,800,404	0.90%
13	163.com	10,492,032	0.87%
14	bk.ru	9,416,062	0.78%
15	yahoo.fr	8,886,223	0.74%
Total	-	817,823,522	68.18%

Popular Passwords

Rank	Passwords	Numbers
1	123456	3,370,644
2	123456789	1,187,812
3	Homelesspa*	546,648
4	password	522,529
5	abc123	516,091
6	password1	435,753
7	12345	382,970
8	qwerty	376,099
9	12345678	357,654
10	1234567 287,453	
11	1234567890	252,929
12	111111	236,852
13	iloveyou	211,593
14	123456a	205,807
15	123123	191,450
Total	-	9,082,284

AZSecure Privacy Portal Design

Figure 1. AZSecure Privacy Portal Project Overview

Search in AZSecure Privacy Portal

Figure 5. A mock-up response when records are found

Return Exposed PII

How do I protect myself? Find out <u>here</u>.

Figure 9. Mock-ups of a comprehensive exposed PII profile

Platform Leaked Attributes					
TorMarket	name: lee katchen zip: 16*** address: 1234 Ma******** jobDetails: carpenter relationshipStatus: married politicalViews: moderate religiousViews: buddhist birthyear: 1948 phoneNumber: 631-***-**** city: er*****				
sults fr	om surface web search engines:				
Platform	Leaked Attributes	MCA Matching Results⊙	TF/IDF Matching Results		
Zabasearch	name: Lee R Katchen state: Pennsylvania address: 5551 Fr******** birthyear: 1948 phoneNumber: 814-***-**** city: Er*****	•	\otimes		
Anywho	name: Lee R Katchen state: PA address: 1024 Ap********* city: Er***** phoneNumber: 814-***_****	•	\otimes		
Anywho	name: Lee R Katchen state: PA address: 3747 Bi********* Age: 52 city: Er***** phoneNumber: 814-***_****	\otimes	\otimes		
, any whice					

Adversarial Malware Generation and Evasion: adversarial AI in cybersecurity

(SaTC 2019-; SFS-2, 2019-)

Secure and Trustworthy Cyberspace (SaTC)

PROGRAM SOLICITATION NSF 21-500

REPLACES DOCUMENT(S): NSF 19-603

Directorate for Computer and Information Science and Engineering Division of Computer and Network Systems Division of Computing and Communication Foundations Division of Information and Intelligent Systems Office of Advanced Cyberinfrastructure CyberCorps(R) Scholarship for Service (SFS) Defending America's Cyberspace

PROGRAM SOLICITATION NSF 21-580

REPLACES DOCUMENT(S): NSF 19-521

National Science Foundation Directorate for Education and Human Resources Division of Graduate Education

Defending Cybersecurity AI Agents Reza Ebrahimi (JMIS, MISQ)

- Essay I: Learning to Protect Malware Detectors
- Essay 2: Learning to Protect any Defense Al agent

Defending Cybersecurity Al Agents

Symantec unveils artificial intelligence powered endpoint security

(expresscomputer.in)

- Cybersecurity firms are adopting AI agents for autonomous cyber defense (Rai et al. 2019).
 - Automate threat detection and remediation at a large scale (Tolido et al. 2019).
- However, AI agents have shown to be vulnerable to adversarial attacks.
- Inputs meticulously modified to mislead them (Yuan et al. 2019). → Known as adversarial attacks (Apruzzese et al. 2019).

How can we protect cyber defense AI agents?
Defending Cybersecurity AI Agents

Essay I: Learning to Protect Malware Detectors (JMIS, In sub.)

- Malware attack is #1 cause of damage to IT infrastructure (Bissell et al. 2019).
- Malware detector is the first line of defense. \rightarrow Can be misled by adversarial inputs.
 - Language modeling helps emulate these inputs.

Essay II: Learning to Protect any Defense AI Agent (MISQ, 1st Round)

- Modern AI agents can be misled by adversarial attacks. → Emulating these attacks is vital for defense. Inputs
- A game between adversary Adversarial Attack Vectors and defender helps emulation.

Vulnerable Cyber Defense

Strengthened the robustness of AI agents against adversarial attacks.

Smart Vulnerability Assessment: scientific workflows and OSS vulnerability analytics and mitigation

(CICI 2019-; SFS-2, 2019-)

CyberCorps(R) Scholarship for Service (SFS) **Defending America's Cyberspace**

PROGRAM SOLICITATION NSF 21-580

REPLACES DOCUMENT(S): NSF 19-521

Directorate for Education and H Division of Graduate Education Cybersecurity Innovation for Cyberinfrastructure (CICI)

PROGRAM SOLICITATION

NSF 21-512

REPLACES DOCUMENT(S): NSF 19-514

National Science Foundation Directorate for Computer and Information Science and Engineering Office of Advanced Cyberinfrastructur

Linking Hacker Community Exploits to Known Vulnerabilities for Proactive Cyber Threat Intelligence: An Attention-based Deep Structured Semantic Model Approach

Sagar Samtani (MISQ, forthcoming)

Protecting Scientific Instruments and Cyberinfrastructure:

From iPlant/CyVerse (life sciences) to BioSphere 2/LEO (earth sciences)... a new UA/USF/AZSecure NSF CICI project, 2019-2022

Hacker Forum Exploits

• Key Characteristics:

- 1. Descriptive tool names (target, operations, etc.)
- 2. Clear categories of exploits (e.g., target system)
- 3. Post date of when exploit was posted

Vulnerability Assessment

Cisco IOS IPS Denia	al of Service Vulnerability - Cisco Systems							
Synopsis	Synopsis							
The remote device is	The remote device is missing a vendor-supplied security patch.							
Description The Cisco IOS Intrusion that use the SERVICE condition.	Description The Cisco IOS Intrusion Prevention System (IPS) feature contains a vulnerability in the processing of certain IPS signatures that use the SERVICE.DNS engine. This vulnerability may cause a router to crash or hang, resulting in a denial of service condition.							
Risk Inform Risk Factor: CVSS Base Sc CVSS Vector: Reference In CVE: CVE-200 OSVDB: 48711	High core: 7.8 d CVSS2#AV:N/AC:L/Au:N/C:N/I:N/A:C formation: 8-2739							
BID: 31364	BID: 31364 e							
Bugtraq IID:	Bugtraq ID: 31364							
Class:	Failure to Handle Exceptional Conditions							
CVE:	CVE-2008-2739							
Remote:	Yes							
Local:	Local: No							
Published:	Published: Sep 24 2008 12:00AM							
Updated:	Sep 24 2008 08:19PM							
Credit:	The discoverer of this issue is not known; this issue was disclosed by Cis							
Vulnerable:	Cisco IOS 12.4YA Cisco IOS 12.4XZ Cisco IOS 12.4XY Cisco IOS 12.4XW Cisco IOS 12.4XV Cisco IOS 12.4XV Cisco IOS 12.4XT							

		ON DEM	AND SECURITY
Category	Metadata	Description	Data Type
escription	Name	Short, descriptive name of vulnerability	Short text
1.	Family Name	Family vulnerability belongs to (e.g., Windows, etc.)	Categorical
	Description	Lengthy text description about vulnerability	Long text
	Synopsis	Short description of vulnerability	Short text
	Solution	Description or solution links	Short text
2.	Vulnerable Systems	List of systems susceptible to vulnerability	Short text (list)
lisk 🥊	CVSS	Value between 0.0-10.0 indicating vulnerability severity	Continuous
5.	Risk Factor	Categorical rating of risk (High, Low)	Categorical
	CVE	Vulnerability reference number	Categorical
	Publication Date	Date vulnerability was publicly published	Date
	1/ a A 44!la	uton Datumand by Madama Vulnamahility Canana	

Key Attributes Returned by Modern Vulnerability Scanners

• Key Characteristics:

1. Short, descriptive title of vulnerability

Nessus N

- 2. List of systems susceptible to vulnerability
- 3. Common Vulnerability Severity Score (0.0 10.0)

 Contribution: EVA-DSSM integrates an attention mechanism into the DSSM. Identifies and outputs key exploit features essential for creating links

Experiment Results: EVA-DSSM vs Deep Learning Matching Algorithms

Algorithm	Remote Exploits					Local Exploits				
	NDCG@1	NDCG@3	NDCG@5	MRR	MAP	NDCG@1	NDCG@3	NDCG@5	MRR	MAP
ANMM	0.4214***	0.5453***	0.5670***	0.6009***	0.5434***	0.3525***	0.4421***	0.5099***	0.5229***	0.4897***
ARC-I	0.2589***	0.3683***	0.4409***	0.4384***	0.4038***	0.3275***	0.4152***	0.4923***	0.4754***	0.4914***
ARC-II	0.3964***	0.5450***	0.5855***	0.5999***	0.5616***	0.4025***	0.5010***	0.5681***	0.5646***	0.5692***
KNRM	0.4571***	0.5521***	0.6152***	0.6433***	0.5549***	0.4000***	0.4603***	0.5389***	0.5478***	0.5155***
Conv-KNRM	0.5411	0.6330*	0.6745*	0.7053	0.6553**	0.4850***	0.5837***	0.6311***	0.6388***	0.6188***
DRMM	0.5339	0.6420	0.6830	0.6943	0.6760	0.1700***	0.2511***	0.4242***	0.3807***	0.3606***
DUET	0.5232	0.6104*	0.6601*	0.6671	0.6061***	0.3725***	0.4356***	0.5231***	0.5146***	0.5268***
MatchLSTM	0.1536***	0.3220***	0.4164***	0.3881***	0.4026***	0.2300***	0.3459***	0.4389***	0.4053***	0.4485***
MV-LSTM	0.5393	0.6250**	0.6549**	0.6831*	0.6420**	0.5325***	0.5943***	0.6483***	0.6541***	0.6365***
DSSM	0.3339***	0.5019***	0.5579***	0.5391***	0.5722***	0.5175***	0.6455***	0.6723***	0.6696***	0.6984***
Left EVA-DSSM	0.1607***	0.2934***	0.4118***	0.3813***	0.3982***	0.4155***	0.4333***	0.2500***	0.3170***	0.4306***
EVA-DSSM	0.5469	0.6499	0.6857	0.7023	0.6834	0.6775	0.7779	0.7853	0.7865	0.8092
Algorithm		We	b Applicatio	ns	-	DoS Exploits				
	NDCG@1	NDCG@3	NDCG@5	MRR	MAP	NDCG@1	NDCG@3	NDCG@5	MRR	MAP
ANMM	0.3125***	0.4527***	0.5114***	0.5075***	0.4704***	0.1790***	0.2691***	0.3640***	0.3969***	0.3532***
ARC-I	0.0906***	0.3378***	0.4275***	0.3637***	0.4042***	0.1176***	0.2111***	0.2717***	0.2828***	0.3233***
ARC-II	0.3250***	0.4894***	0.5410***	0.5275***	0.5405***	0.2053***	0.2881***	0.3395***	0.3697***	0.3864***
KNRM	0.5312	0.6248**	0.6728**	0.6772*	0.6786*	0.2684**	0.3166***	0.3461***	0.3817***	0.4002***
Conv-KNRM	0.5531	0.6716*	0.6973*	0.7122	0.6864*	0.2825*	0.3291***	0.3913***	0.4293**	0.4468***
DRMM	0.3619**	0.4874***	0.5497***	0.5156***	0.5373***	0.2333**	0.2954***	0.3493***	0.4052**	0.3851***
DUET	0.0907***	0.3489***	0.4257***	0.3704***	0.3959***	0.1561***	0.2388***	0.2917***	0.3179***	0.3368***
MatchLSTM	0.1063***	0.2906***	0.4187***	0.3606***	0.3839***	0.2986	0.3452*	0.4102*	0.4652	0.4472**
MV-LSTM	0.4531*	0.6416*	0.6648**	0.6481**	0.6473**	0.2614**	0.3397***	0.4095**	0.4524*	0.4371***
DSSM	0.5968	0.7325	0.7796	0.7468	0.7947	0.2632**	0.3625**	0.4079**	0.5011**	0.4367**
Left EVA-DSSM	0.0719***	0.3098***	0.3926***	0.3373***	0.3769***	0.1175***	0.1559***	0.2457***	0.2432***	0.3117***
EVA DOOM	0 6281	0 7602	0 7885	0 7684	0 7863	0.3579	0 4550	0 4954	0.5133	0 6009

- EVA-DSSM outperforms all deep learning benchmarks
- Conv. or LSTM operations achieved lower performances
- Indicates that integrating an attention mechanism into the DSSM architecture does not deteriorate performance

Case Studies: SCADA and Hospitals

- 20,461 SCADA Devices from major vendors (e.g., Rockwell)
- Motivation: SCADA → control critical infrastructure

- 1,879 devices from top 8 US hospitals
- Motivation: Hospitals → popular target for hackers

Hospital Case Study

	Hospital Dev	vice Information	Device Seve	Device Severity Score Information for Selected Devices				
	Hospital Name	Hospital Name # of Vulnerable Devices/# of devices		# of Vulnerabilities	Vulnerabilities	DVSM		
	12x.x.x.x	12x.x.x.x 133/808 19x.x.x.x 27/301		3	FTP issues	4.591		
	19x.x.x.x			3	SSH issues	4.376		
ł	17x.x.x.x	31/274	eCare web portal	47	XSS, OpenSSL, buffer overflow, DoS	61.761		
	16x.x.x.x	16x.x.x.x 59/160		5	PHP and SSH issues	4.863		
	1 4 4 4 4 4 4	64/130	Web Server	3	SQL Injections	7.528		
	14X.X.X.X		Apple TV	2	Buffer overflow	5.381		
	14x.x.x.x	14/107	SSH/Web server	4	PHP and SSH issues	3.871		
	6x.x.x.x	9/52	Informational diabetes portal	3	SVN and Unix vulnerabilities	7.159		
ſ	16x.x.x.x	7/47	Web Server	6	XSS, HTMLi	9.367		
	Total:	344/1,879 (18.31%)	-	-	-	-		

Vulnerability Name (CVSS Score) **Exploit Name (Post Date) Severity Score Partners** eCare "OpenSSL TLS Heartbeat Extension – "OpenSSL Unsupported" (10.0) 3.366 Username Memory Disclosure" (4/8/2014) "Multiple XSS Vulnerabilities" (4.3) "Portal XSS Vulnerability" (5/28/2010) 1.261 Password Log In Total: 61.761

- Portals are a common avenue for hackers to access sensitive records (Ayala 2016).
- Analysis shows an eCare portal with a large attack surface: 47 vulnerabilities for a DVSM of 61.761.
- Network admins can prioritize this device when analyzing their weaknesses.

Grouping Vulnerable Virtual Machines in Scientific Cyberinfrastructure: A Multi-View Representation Learning Approach

Steven Ullman (MISQ, under review)

VM OSS Vulnerabilities

- Configurable VM images allow users to install Open-Source Software (OSS, i.e., applications) from third parties (e.g., GitHub) and manipulate file systems (e.g., permissions) to support their desired analytics.
- OSS can contain significant software-level vulnerabilities often missed by generalpurpose scanners (e.g., Nessus) (Ullman et al., 2020).
- Misconfigured file permissions and file block organization can lead to kernel crash, and permission bypass (Cai et al., 2019).
- Scientific CIs often lack dedicated support staff to prioritize and remediate vulnerabilities (JASON 2019). Therefore, vulnerabilities can remain undetected for years (Osborne 2020).

Figure 1. VM image details include (a) name and date of creation, (b) description, and (c) tags of included technologies

Figure 2. VM image with (d) server name, (e) operating system and kernel version, (f) available updates, and (g) time of login with IP address 86

Research Design

Figure 5. Comparison of MVA (left) vs. Proposed Multi-View Self-Attentive Autoencoder (MV-SAAE) (right) $_8$

Results and Discussion

Case Study: Clustering Similar Images & Vulnerabilities

Case Study – CyVerse Image Clusters & Vulnerabilities

 Table 14. Selected Vulnerable Applications Within Clusters

Detecting and Grouping Vulnerable GitHub Repositories in Scientific Cyberinfrastructure: An Unsupervised Graph Embedding Approach

Ben Lazarine (in preparation)

Scientific CI GitHub Vulnerabilities

- Illustrated in Figure 1 is an insecure source code snippet in a major scientific Cl's GitHub repository that is susceptible to shell injection attacks.
- Insecure coding practices can lead to the spread of vulnerabilities (i.e., shell injection) that can disrupt scientific CI.

Figure 1. GitHub Repository pages include (a) the name of the owner and repository, (b) the number of times the repository has been forked (copied by other users), and (c) the source code within the repository

Research Design

Results and Discussion

Case Study: Clustering Similar CI/GitHub Repositories

Figure 7. VADW Vulnerability Grouping Procedure

Case Study: Clustering Similar Repositories

Cluster	Vulnerability	Severity	Repository	Count
			Cyverse-archive/DE	4,096
	Password	Low 1 .	Angrygoat/DE	255
			Johnworth/DE	43
	Corret	Lliah	Cyverse-archive/DE	1,717
(n = 40)	Secret	High	Angrygoat/DE	89
(11 – 40)			CyVerse-learning-materials/container	
	Insecure	High	_camp_workshop_2019	685
	Function		julianpistorius/container_camp_workshop_2019	685
			mcutshall/atmosphere	139
	Insecure Input	2	Cyverse/irods-legacy	7,744
		High	niravmerchant/Visual_Interactive_Computing_Environment	39
			CyVerse-learning-materials/Visual	
			_Interactive_Computing_Environment	39
Cluster I		High	niravmerchant/Visual_Interactive_Computing_Environment	685
(n - 162)	Insecure		CyVerse-learning-materials/Visual	
(11 - 105)	Function		_Interactive_Computing_Environment	685
			Cyverse/irods-legacy	556
	Filo		Cyverse/irods-legacy	271
	Permission	High	cyverse/ansible	16
	Permission		steve-gregory/ansible	16

- DE is a repository that contains code for CyVerse's Discovery Environment life science research web portal that provides access to the data store and compute resources of the CI. Contains secret and password vulnerabilities and has been forked 10 times, indicating the vulnerabilities have propagated.
- 2. The irods-legacy repository contains data management software. Contains 167 high severity insecure input, insecure functions, and file permissions C/C++ vulnerabilities. ⁹⁷

Some Advice for Junior Faculty and Ph.D. Students: Journals and Grants

Major Journals: i-School, c-School, b-School

- i-School (\$80K) & health informatics Journals: JASIST, ACM TOIS; JAMIA, JBI
 → "informatics" (text) focused, system driven; helpful for NSF & NIH/NLM funding
- c-School (\$100K) Journals: ACM TOIS, IEEE TKDE, CACM, IEEE IS, IEEE Computer, IEEE SMC → algorithm/computing focused, data driven; helped significantly with NSF funding (same for major CS conferences)
- b-School (\$180K) Journals: MISQ, ISR, JMIS, MS, ACM TMIS, DSS → "design science" focused, managerial framework/principle/knowledge base; helped get jobs in major b-schools (little federal funding)

Major Journals: Chen, i-, c-, b-school, CISE

• Work hard; be persistent; colleagues & students help a lot; a little bit of luck helps

A		Hsinchun Ch	en 🖍			M FOLLOW	Cited by		VIE
125		University of Arizon	<u>la</u> nail arizona ed	u - Homenade				All	Sinc
		business analytics	data mining	security informatics	health informa	atics	Citations h-index	39953 101	
b							i10-index	334	
TITLE	C	6 6 0			CITED	BY YEAR			
H Chen, MIS quar	ss inte RHL Cl terly, 1 ⁴	illigence and analyt hiang, VC Storey 165-1188	ics: From big	data to big impact	52	250 2012	-+++		h
Credit r a marke Z Huang Decision	et con H Che suppor	analysis with suppo parative study n, CJ Hsu, WH Chen, S t systems 37 (4), 543-5	o rt vector mac 3 Wu 58	hines and neural ne	etworks: 10	99 2004	2013 2014 2015	2016 2017 2018 20	019 2020
Sentime classifie A Abbasi	ent an cation , H Che	alysis in multiple la in web forums m, A Salem	nguages: Fea	ature selection for op	Dinion 10	044 2008	Co-authors		
Applyin	g ass	ociative retrieval teo	chniques to a	lleviate the sparsity	problem 8	3 <mark>58</mark> 2004	Professo	ajun Zeng or of MIS. Affiliation	ns: Uni
In colla Z Huang ACM Tra	borativ , H Che nsactio	/e filtering n, D Zeng ns on Information Syste	ems (TOIS) 22 (1	I), 116-142			Wingyar Western	1 Chung Carolina Universi	ty

refine by venue

32 more options

VIEW ALL

Since 2015

18060

56

237

3400

2550

1700

850

EDIT

>

Decis. Support Syst. (49) J. Assoc. Inf. Sci. Technol. (32) IEEE Intell. Syst. (20) J. Am. Soc. Inf. Sci. (14) Computer (12) . Manag. Inf. Syst. (11) ACM Trans. Inf. Syst. (10) ACM Trans. Manag. Inf. Syst. (8) Commun. ACM (7) IEEE Trans. Knowl. Data Eng. (7) J. Biomed. Informatics (6) Int. J. Hum. Comput. Stud. (6) IEEE Trans. Inf. Technol. Biomed. (6) MIS Q. (6) ARIST (5) Inf. Syst. Frontiers (5) J. Inf. Sci. (3) Inf. Technol. Manag. (3) Inf. Process. Manag. (3) IEEE Trans. Syst. Man Cybern. Part A (3) IEEE Expert (2)

refine by coauthor

Daniel Dajun Zeng (24) Michael Chau (22) Jay F. Nunamaker Jr. (17) Ahmed Abbasi (17) Gavin Yulei Zhang (17) Wingyan Chung (14) Yan Dang 0001 (14) Bruce R. Schatz (13) Zan Huang (12) Robert P. Schumaker (11) 246 more options

Major Journals: MISQ & JMIS

- MISQ: A+ journal, #1 in MIS
 - behavior/management focused traditionally (most SEs)
 - recent focus in business analytics & data sciences (SEs: HRR, GA, IB, PK, JP) → selecting the right SEs/AEs
 - Computational design science: application-inspired novelty (algorithm, representation, framework, HCI) + societal impact → significant content & mature writing (40+ pages)
 - MIS-specific lit review + methodology/framework/design "theory" + contribution to KB + principles (research abstraction) → right packaging
- JMIS: A journal, #3 in MIS
 - Same as above; more system driven
 - Zwass + Nunamaker; HICSS special issue

Gedim	inas Adomavicius	University of Minnesota
<u> </u>	Corey Angst	University of Notre Dame
Indi	ranil Bardhan*	University of Texas at Austin
W	ai Fon <u>g Boh</u>	Nanyang Technological University
Andre	ew Burton-Jones	University of Queensland
Re	on Cenfetelli	University of British Columbia
De	ennis Galletta	University of Pittsburgh
	<u>Bin Gu</u>	Boston University
Sirk	<u>ka Jarvenpaa*</u>	University of Texas at Austin
Gera	ld <u>(Jerry) Kane</u>	Boston College
Atre	yi Kankanhalli	National University of Singapore
	<u>Mark Keil</u>	Georgia State University
Prab	hudev Konana	University of Texas at Austin
	<u>Xinxin Li</u>	University of Connecticut
Liko	ebe Maruping	Georgia State University
Sh	<u>aila Miranda</u>	University of Oklahoma
<u>S</u>	unil Mithas	University of South Florida
Ē	Eivor Oborn	University of Warwick
Gal Oe	estreicher-Singer	Tel Aviv University
Je	<u>ffrey Parsons</u>	Memorial University of Newfoundland
	<u>H. R. Rao</u>	University of Texas at San Antonio
<u>T. I</u>	<u>Kavichandran</u>	Rensselaer Polytechnic Institute
<u>Sa</u>	onee Sarker	University of Virginia
Cł	nee-Wee Tan	Copenhagen Business School
Jas	on Thatcher*	Temple University
Jam	es Y. L. Thong	Hong Kong University of Science and Technology
A	<u>mrit Tiwana</u>	University of Georgia
Siva	a Viswanathan	University of Maryland
Jonat	than Wareham*	ESADE
S	ean Xin Xu	Tsinghua University

Major Journals: Chen, AI Lab Computational Design Science (CDS) Papers in MISQ, 2008+

<u>A Deep Learning Approach for Recognizing Activity of Daily Living (ADL) for Senior Care: Exploiting</u> Interaction Dependency and Temporal Patternsn

Hongyi Zhu, Sagar Samtani, Randall A. Brown, and Hsinchun Chen Forthcoming, 2020

Health Analytics; Deep Learning

2020

[j257] B & R & Michael Chau, Tim M. H. Li, Paul W. C. Wong, Jennifer J. Xu, Paul Siu Fai Yip, Hsinchun Chen: Finding People with Emotional Distress in Online Social Media: A Design Combining Machine Learning and Rule-Based Classification. MIS Q. 44(2) (2020) Health Analytics

[-] 2010 - 2019 0

2019

📕 [j254] 📋 😃 🔍 📽 Victor A. Benjamin, Joseph S. Valacich, Hsinchun Chen:

DICE-E: A Framework for Conducting Darknet Identification, Collection, Evaluation with Ethics. MIS Q. 43(1) (2019)

2017 Security Analytics

[j242] E & C C C
 Yu-Kai Lin, Hsinchun Chen, Randall A. Brown, Shu-Hsing Li, Hung-Jen Yang:
 Healthcare Predictive Analytics for Risk Profiling in Chronic Care: A Bayesian Multitask
 Learning Approach. MIS Q. 41(2): 473-495 (2017)

Health Analytics

_	Special Issue, Business Analytics; 5250 citations					
	[j214]	<u>∎</u> £ ¢ ~	Hsinchun Chen, Roger H. L. Chiang, Veda C. Storey: Business Intelligence and Analytics: From Big Data to Big Impact. MIS Q. 36(4): 1165-1188 (2012)			
	2010					
	■ [j178]	<u>∎</u> ₽¢«	Ahmed Abbasi, Zhu Zhang, David Zimbra, Hsinchun Chen, Jay F. Nunamaker Jr.: Detecting Fake Websites: The Contribution of Statistical Learning Theory. MIS Q. 34(3): 435-461 (2010)			
	[-] 20	00 - 2009 🛛	Security Analytics; Best Paper, ICIS, 2010			

2008

📕 [j139] 🔋 🗄 😤 😤 Ahmed Abbasi, Hsinchun Chen:

CyberGate: A Design Framework and System for Text Analysis of Computer-Mediated Communication. MIS Q. 32(4): 811-837 (2008)

Social Media Analytics

Major Journals: Health IT & Analytics Special Issue, March 2020

SPECIAL ISSUE: CHRONIC DISEASE

CONNECTING SYSTEMS, DATA, AND PEOPLE: A MULTIDISCIPLINARY RESEARCH ROADMAP FOR CHRONIC DISEASE MANAGEMENT¹

Indranil Bardhan

Department of Information, Risk and Operations Management, McCombs School of Business, The University of Texas at Austin, Austin, TX 78705 U.S.A. {indranil.bardhan@mccombs.utexas.edu}

Hsinchun Chen

MIS Department, Eller College of Management, The University of Arizona, Tucson, AZ 85721-0108 U.S.A. {hsinchun@email.arizona.edu}

Elena Karahanna

MIS Department, Terry College of Business, The University of Georgia, Athens, GA 30602 U.S.A. {ekarah@uga.edu}

Special Issue: The Role of Information Systems and Analytics in Chronic Disease Prevention and Management

Special Issue Articles

<u>Trajectories of Repeated Readmissions of Chronic Disease Patients: Risk Stratification, Profiling, and Prediction</u> Ofir Ben-Assuli and Rema Padman (pp. 201-226; DOI: 10.25300/MISQ/2020/15101)

Chronic Disease Management: How IT and Analytics Create Healthcare Value Through the Temporal Displacement of Care

Steve Thompson, Jonathan Whitaker, Rajiv Kohli, and Craig Jones (pp. 227-256; DOI: 10.25300/MISQ/2020/15085)

Go to You Tube and Call Me in the Morning: Use of Social Media for Chronic Conditions Xiao Liu, Bin Zhang, Anjana Susarla, and Rema Padman (pp. 257-283; DOI: 10.25300/MISQ/2020/15107)

A Data Analytics Framework for Smart Asthma Management Based on Remote Health Information Systems with Bluetooth-Enabled Personal Inhalers Junbo Son, Patricia Flatley Brennan, and Shiyu Zhou (pp. 285-303; DOI: 10.25300/MISQ/2020/15092)

<u>A Comprehensive Analysis of Triggers and Risk Factors for Asthma Based on Machine Learning and Large Heterogeneous Data Sources</u> Wenli Zhang and Sudha Ram (pp. 305-349; DOI: 10.25300/MISQ/2020/15106)

Examining How Chronically Ill Patients' Reactions to and Effective Use of Information Technology Can Influence How Well They Self-Manage Their Illness Azadeh Savoli, Henri Barki, and Guy Paré (pp. 351-389; DOI: 10.25300/MISQ/2020/15103)

<u>The Effects of Participating in a Physician-Driven Online Health Community in Managing Chronic Disease: Evidence from Two Natural Experiments</u> Qianqian Ben Liu, Xiaoxiao Liu, and Xitong Guo (pp. 391-419; DOI: 10.25300/MISQ/2020/15102)

Major Journals: MISQ CDS Common Issues

- MISQ, My Experience: no paper/involvement before 2008 (no SE in design science); Abbasi 2008 (CyberGate), 2010 (AZProtect, ICIS best paper); Guest Editor, BI&A special issue, 2010-2012 (Straub); SE 2016-2019 (Rai); Guest Editor, Health IT/Analytics special issue, 2016-2020 (Rai)
- Design Science paper common issues:
 - Where is the theory? Is this MIS? (early reviewers' critiques)
 - Few qualified/sympathetic design science SEs, AEs, reviewers. (overly critical)
 - Long review cycle (2-4 rounds/years) and uncertainty (rejection at late round).

→ but

- BI&A and data sciences are hot, in society and in b-school curriculum!
- Young MIS CDS scholars need 1-2 MISQ/JMIS papers accepted or in deep round.
- Mid-career MIS CDS scholars need 3-5 MISQ/JMIS papers for tenure.

Major Journals: MISQ CDS Paper Template

- Computational design science (Chen in Rai, 2017): application-inspired novelty (algorithm, representation, framework, HCI) + emerging highimpact problems
- Significant content & mature writing (40+ pages)
- MIS-specific lit review (3-4 pages) → Who/what had (been) published in MISQ/ISR/JMIS (10-20 MIS references, taxonomy, analytics relevance)
- Methodology/framework/design "theory" (2-3 pages) → underlying methodological foundation (not behavioral theory of +/- hypotheses), e.g., Systematic Functional Linguistic Theory, Kernel Learning Theory, etc.
- Contribution to KB + principles (research abstraction; 2-3 pages) → What have been learned about the design, use and general knowledge gained?
- → Carefully study sample MISQ DS papers, e.g., (Abbasi, 2008; 2010).

Major Journals: MISQ CDS Review Process

- Make sure the research fits. → Emerging high-impact problems + some (not a lot) application-inspired novelty
- Make sure writing is mature. → Error-free! (40+ pages)
- Select the "right" SEs and AEs. → Recruit and/or consult a senior experienced MISQ DS scholar.
- 1st-round review; hope for the best after 6 months. → Getting Major Revision is good (10+ pages of feedback is common)! Now their demands are clear!
- 1st-round revision is important; in 6 months. → Showing appreciation, respect and tangible revision actions. Don't fight/argue! (50+ pages of response letter!)
- 2nd/3rd/4th round review/revision → Removing one critical reviewer at a time; more Minor Revision and/or Accept over time
- Final decision; 2-4 years later → Eventually the SE needs to make a decision.
 Everyone is tired after so many years!

Major Grants: NIH, DARPA, DHS, IARPA

- NIH: NLM is informatics-focused; "translational" research with some application-inspired health-related novelty; need pubs and networking in AMIA/JAMIA; strong health informatics (NLM) tradition and turf (strong personality) → Chen as NLM Scientific Counselor, 2002-2006
- DOD/DARPA: was innovative, basic/foundational, long-term (ARPA Net); now mission-critical, system-driven, short-term; commercial company (defense contractor) as prim, academic as sub; bi-monthly milestones/metrics/reporting → Chen early success with DARPA/IARPA/DHS for COPLINK/Dark Web research
- DHS, IARPA: similar to DARPA, but aspiring; lesser scientific quality (strong personality)
- → Not my focus any more! (Need to smell like them.)

Major Grants: NSF Org Chart

Major Grants: NSF CISE/IIS/III

CISE

Deputy AD

703.292.8900

Margaret Martonosi. Assistant Director Erwin Gianchandani, **IIS/OAC**

Directorate for Computer & Information Science & Engineering	CISE/OAD
Office of Advanced Cyberinfrastructure	CISE/OAC
Division of Computing and Communication Foundations	CISE/CCF
Division of Computer and Network Systems	CISE/CNS
Division of Information and Intelligent Systems	CISE/IIS

- IIS: Human-Centered Computing (HCC)
- IIS: Information Integration and Informatics (III)
- IIS: Robust Intelligence (RI)
- OAC: OAC Core Research (OAC Core)

Major Grants: NSF CISE/IT Societal Impacts (NAS)

Source: From [6], reprinted with permission from the National Academy of Sciences, courtesy of the National Academies Press, Washington D.C. @ 2003.

University research → **Industry R&D** → **Products** → \$1B Market (job and wealth creation)

Major Grants: NSF Programs

- CORE: NSF CISE/IIS/III CORE most relevant to <u>fundamental research</u> in AI, machine learning, WWW, data sciences, NLP; acceptance rate 6-8%, highly competitive, critical young CS reviewers → IIS Core (\$100M/yr)
- OAC: NSF CISE/OAC relevant to <u>applied cyberinfrastructure</u> for sciences; acceptance rate 20-30%, less competitive, reviewers including CS, SBE, and domain sciences → DIBBs, CICI (\$25M-30M/yr; my focus)
- Applied Programs: Many emerging cross-directorate (e.g., EHR, SBE, CISE) and cross-agency (e.g., NSF, NIH, DOD) <u>high-impact applied research</u> <u>programs</u> (e.g., security, health); acceptance rate 15-20%, less competitive, reviewers including CS, SBE, and SME → SaTC, SFS, CCRI, SCH, BIGDATA, I-DSN, National AI Institutes (\$50M-100M/yr; my focus)
- Young Scholars: Many opportunities for <u>early-career scholars</u>; acceptance rate 10-20%, competitive, for early career; valuable for obtaining tenure!
 → CRII, CAREER + EAGER (\$200K-\$1M for each award)

Major Grants: NSF Proposal Observations

- Computational Design Science (CDS) has excellent chance for successful proposals (CISE). → in general, not so much for behavioral or economics MIS researchers (SBE; too basic, too incremental, not novel).
- "Business" (finance, accounting, marketing) school research is not considered STEM. → need to position for larger societal/STEM problems.
- CDS research needs to compete with CS researchers ("locusts" in emerging technical fields); deep & novel domain application for emerging societal problems could be viable. → my approach at least, for the past 30 years: digital library, intelligence, health, cybersecurity, etc.
- Need application or domain-inspired novelty for applied cross-directorate programs. → senior Ph.D. students; last 1-2 dissertation chapters
- A lab or center can help with sustainable advantage and funding. → developing collection, prototype system, etc.; structure & organizational memory

Major Grants: NSF Proposal Template

- Proposal title: short and succinct; need a <u>multi-disciplinary</u> team
- Project summary: Summarize problems and approach; include <u>IM + BI</u>
- Main text (15 pages)
 - Need mature writing; good <u>diagrams</u>
 - Need <u>methodological/algorithmic novelty</u> (IM, 60%); need strong impacts (BI, 40%)
 - Need good <u>lit review</u> (state-of-the-art) & promising <u>preliminary results</u>
- CV: need relevant ACM/IEEE references; MISQ/ISR pubs help very little
- Others: Good to have <u>office support</u>, e.g., budget, facilities, DMP, routing, etc.

TABLE OF CONTENTS

For font size and page formatting specifications, see PAPPG section II.B.2.

	Total No. of Pages	Page No.* (Optional)*
Cover Sheet for Proposal to the National Science Foundation		
Project Summary (not to exceed 1 page)	1	
Table of Contents	1	
Project Description (Including Results from Prior NSF Support) (not to exceed 15 pages) (Exceed only if allowed by a specific program announcement/solicitation or if approved in advance by the appropriate NSF Assistant Director or designee)	15	
References Cited	6	
Biographical Sketches (Not to exceed 2 pages each)	8	
Budget (Plus up to 3 pages of budget justification)	6	
Current and Pending Support	4	
Facilities, Equipment and Other Resources	2	
Special Information/Supplementary Documents (Data Management Plan, Mentoring Plan and Other Supplementary Documents)	2	
Appendix (List below.) (Include only if allowed by a specific program announcement/ solicitation or if approved in advance by the appropriate NSF Assistant Director or designee)		

Major Grants: NSF Proposal Reviews

- As a reviewer/panelist:
 - Asked to review 7-8 proposals (out of 20-22) in 2-3 weeks
 - One-page review, overall rating: E, VG, G, F, P (few with E or VG)
 - Only 2-3 proposals received Competitive or Highly Competitive (fundable; 90% proposal) in each panel (2/20)
 - On-site panel discussion critical for outcome (vocal panelist)
- As a proposer/PI:
 - Will receive 4-5 reviews, varying from VG, G, F (aiming 80%; rarely receiving E).
 - Common IM critiques: lack of novelty, poor lit review, missing preliminary results
 - Common BI critiques: value unclear, lack of diversity/education plan
 - Other significant critiques: lack of track record, poor team, lack of collaboration plan, etc.
 - Need to improve from 10% success rate (60% proposal) to 30% (80% proposal) over time in 2-3 tries.
 - Learn the process and grantsmanship for future proposals.

Major Grants: NSF General Advice for CDS Scholars

- Develop methodological novelty and application-specific strengths over your career. → world-class excellence vs. other CS scholars
- Train your Ph.D. students well. → their last 2 dissertation chapters could be fundable; they can be trained to write proposals (scale & efficiency)
- Build a center/lab/group. → more sustainable and impressive (common in CS, ECE, MED)
- Improve your grantsmanship. → get to know your PDs and become frequent NSF panelists (getting into their heads)
- Improve your success rate to 30% (one in 3). → target repeating programs for re-submissions
- Monitor and anticipate current and emerging programs. → prepare the next proposals; repeat the cycle!

Parting Thoughts: Hard Work + A Bit of Luck

- Societal Impact > Academic Impact
 - Looking for high-impact societal problems (NYT, WSJ, The Economists)
- IT > MIS
 - MIS is a smaller subfield within broader IT/computing.
- CISE > SBE
 - Computational Design Science can make a difference.
- New > Old
 - Looking for new, interesting, unknown problems
- EQ > IQ
 - Hard work, discipline, aspiration, etc. always beat raw talent. Plus a bit of luck!

For questions and comments

hchen@eller.Arizona.edu http://ai.Arizona.edu

